

Motivation:

- Current algorithms are developed and evaluated on manually cropped dataset. In practice, images come from a detector which introduces larger inter-camera variations.
- \succ Current algorithms optimize components of the reidentification pipeline individually.

Pedestrian detector

Feature extraction

Photometric 💊 Geometric 🔶 transforms

Contribution:

- \succ A new dataset providing bounding boxes from a pedestrian detector^[1] and manually labeling.
- \succ A new deep model for jointly optimizing all components in the re-identification pipeline. It is designed to be robust to imperfect detection.

A New Dataset:

- \succ We build a new dataset in more realistic settings.
 - Pedestrians images are automatically detected by detectors
 - 5 pairs of camera settings in uncontrolled environment
 - 1360 identities, each identity has ~4.8 images per view
 - Manually labeled bounding boxes are also provided

DeepReID: Deep Filter Pairing Neural Network for Person Re-Identification Wei Li Rui Zhao Tong Xiao Xiaogang Wang

Deep Neural Network for ReID:

 \blacktriangleright Jointly optimizing key components of re-identification pipeline: *feature extraction*, *photometric transformations*, geometric transformations.

- **Feature Extraction** is modeled by two parallel convolutional layers and multiple filter pairs.
- **Photometric Transformation** is modeled by height factoring and maxout grouping layers, and the difference detected by paired filters.

- displacement matrices.
- connected layer.

Experiments:

Detected

Reference:

[1] P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan,

Geometric Transformation is modeled by convolution on

> A **Mixture of Transformations** are modeled by fully

Labeled

 \blacktriangleright Our model works best on both detected and labeled samples. Our model drops 0.76% (relatively -3.7%), while the second best (KISSME) drops 2.47%(-17.4%) when automatically detected bounding boxes are used.

 7.87%) 0.52%) 7.10%) 1.17%) 0.61%) 6.45%) 9.90%) 	 Our model performs reasonably well on a much smaller dataset: 971 identities 2 images per identity per view
0.61%) 6.45%) 9.90%) 2.83%) 9.40%)	perview
100	