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Overview:

» Propose to learn mid-level filters from automatically discovered
clusters of patches for person re-identification.

A Tfilter captures a visual pattern related to a particular body part.
» Motivated by:
°* What are good filters for person re-identification?
°* What are good patch clusters to train these filters?
°* How to quantify observations for guiding the learning process?

(i) General (ii) Rare (iii) Effectwe
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Y-axis:
Occurrence
X-axis:
Image Index

Contibutions:

» Partial Area Under Curve (pAUC) score is proposed to measure the
discriminative power of local patches

» Hierarchical clustering trees are built to exploit visual patterns from
local patches

» A simple but effective cross-view training strategy is proposed to
learn view-invariant and discriminative SVM filters

» Matching scores of filter responses are integrated with patch
matching in RankSVM training
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Partial AUC Quantization: Experimental Results:
> Partial AUC Score @ 0 ZEE CMC | SI | 52 | 3 | s4
A . B s00| 2 [ Rankl | 3409 | 3471 | 35.12 | 35.12
¢ Low-pAUC-score patch: monochromatic and frequently seen 3 250! "5 | Rank3 | 53.64 | 54.05 | 53.64 | 54.67
A . . < 400 2 [Rank 10 | 6349 | 62.90 | 63.93 | 64.96
¢ High-pAUC-score patch: varicolored and less frequently appeared £ =0 P27 [Rank20 | 7586 | 7545 | 7442 | 77.10
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(a) Evaluation of Partial AUC quantization (b) Evaluation of cross-view training (c) Evaluation of sparsity
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Learnlng Mld-level Fllters (d) Examples of positive training patches and high-score testing patches of high-weight and low-weight filters respectively
> Hlerarchlcal clusterlng for each pAUC level. > Evaluation and analysis:
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Comparison with popular Reld methods: VIPeR Datace
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* Integrate filter response matching with patch matching ° 0 ek’ 0 * Rank

¢ Learn unified weighting in RankSVM VIPeR Dataset CUHKOI Dataset
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