

Scan to visit

project page.

Code is available!

Learning Mid-level Filters for Person Re-identification Rui Zhao Wanli Ouyang

Xiaogang Wang

Experimental Results:

Approaches on Mid-level Feature

VIPeR Dataset

--- 17.40% AIR --- 18.78% MLA

29.11% Ours

21.20% ARLTM

Overview:

> Propose to learn mid-level *filters* from automatically discovered clusters of patches for person re-identification.

A *filter* captures a visual pattern related to a particular body part.

- Motivated by:
 - What are good filters for person re-identification?
 - What are good patch clusters to train these filters?
 - How to quantify observations for guiding the learning process?

Contibutions:

- > Partial Area Under Curve (pAUC) score is proposed to measure the discriminative power of local patches
- Hierarchical clustering trees are built to exploit visual patterns from local patches
- A simple but effective *cross-view training* strategy is proposed to learn view-invariant and discriminative SVM filters
- Matching scores of filter responses are integrated with patch matching in RankSVM training

Partial AUC Quantization:

- **Partial AUC Score**
 - Low-pAUC-score patch: monochromatic and frequently seen
 - High-pAUC-score patch: varicolored and less frequently appeared

Learning Mid-level Filters:

Hierarchical clustering for each pAUC level.

Initial Matching:

Overal patch matching scores

Cross-view Training:

- Mining positive for robustness
- Mining negative for discriminativeness

Integrated Matching:

- Normalize and sparsify filter response
- Integrate filter response matching with patch matching
- Learn unified weighting in RankSVM

- Evaluation and analysis:
 - Partial AUC Quantization
 - Cross-view Training
 - Sparse Filtering
- Comparison with other mid-level features
 - AIR [Layne et al. BMVC 2012]
 - MLA [Layne et al. ECCV workshop 2012]
 - ARLTM [Song et al. PR 2012]
- Comparison with popular Reld methods:
 - VIPeR Dataset
 - CUHK01 Dataset

