

Unsupervised Salience Learning for Person Re-identification Wanli Ouyang Xiaogang Wang Rui Zhao

The Chinese University of Hong Kong

Motivation:

- We can recognize persons across camera views from their local distinctive regions
- Human salience
- can identify important local features
- is robust to the change of view points
- itself is a useful descriptor for pedestrian matching
- Distinct patches are considered as salient only when they are matched and distinct in both camera views
- These regions are discarded as outliers by existing methods or have little effect on person matching because of small sizes

Contribution:

- An unsupervised framework to extract distinctive features for person re-identification.
- Patch matching is utilized with adjacency constraint for handling the misalignment problem caused by viewpoint change and pose variation.
- Human salience is learned in an unsupervised way.

Code is available at

http://mmlab.ie.cuhk.edu.hk/projects/project_salience_reid/index.html

Department of Electronic Engineering, The Chinese University of Hong Kong

Dense Correspondence:

- Features: dense color histogram + dense SIFT
- > Adjacency constrained search: simple patch matching

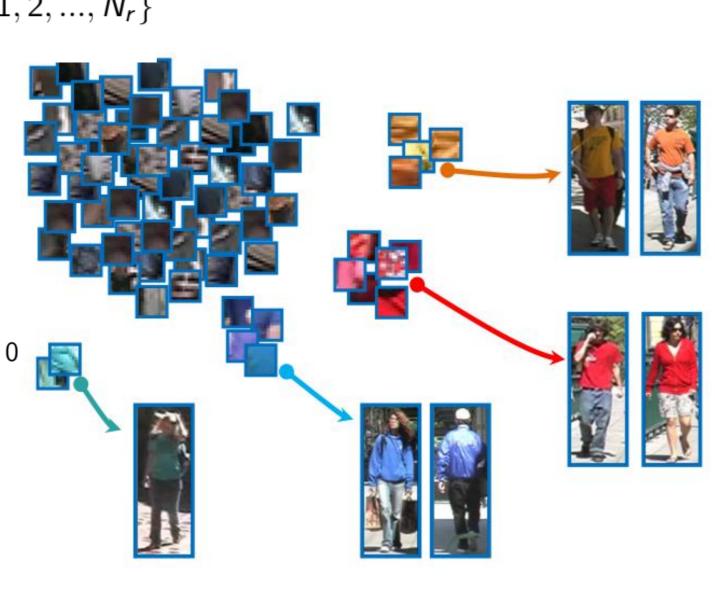
Unsupervised Salience Learning:

- **Definition:** Salient regions are *discriminative* in making a person standing out from their companions, and *reliable* in finding the same person across camera views.
- **Assumption**: fewer than half of the persons in a reference set share similar appearance if a region is salient. Hence, we set k = Nr/2. Nr is the number of images in reference set.

K-Nearest Neighbor Salience:

 $\mathbf{X}_{nn}(x_{m,n}^{A,p}) = \{x \mid \operatorname{argmax} s(x_{m,n}^{A,p}, \hat{x}), q = 1, 2, ..., N_r\}$ $\hat{x} \in \hat{S}_{p,q}$

 $\operatorname{score}_{knn}(x_{m,n}^{A,p}) = D_k(\mathbf{X}_{nn}(x_{m,n}^{A,p}))$

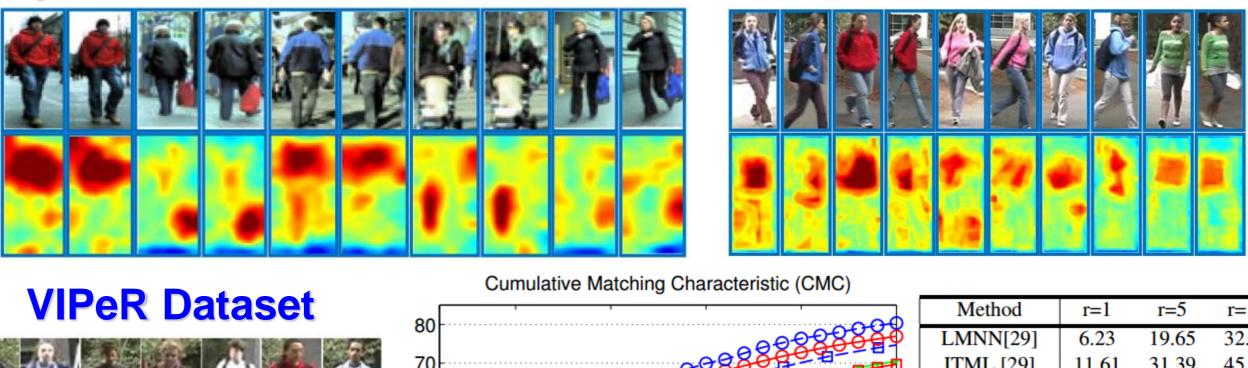

One-Class SVM Salience:

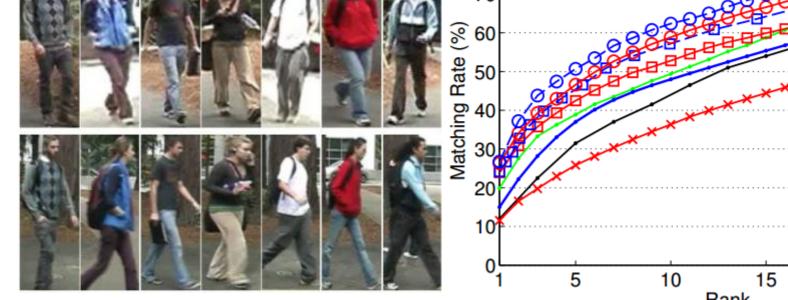
$$\min_{R\in\mathbb{R},\xi\in\mathbb{R}^{I},c\in F}R^{2}+\frac{1}{\nu l}\sum_{i}\xi_{i}$$

 $s.t. \|\Phi(X_i) - c\|^2 \le R^2 + \xi_i, \ \forall i \in \{1, ...l\} : \xi_i \ge 0$

$$f(X) = R^2 - \|\Phi(X) - c\|^2$$

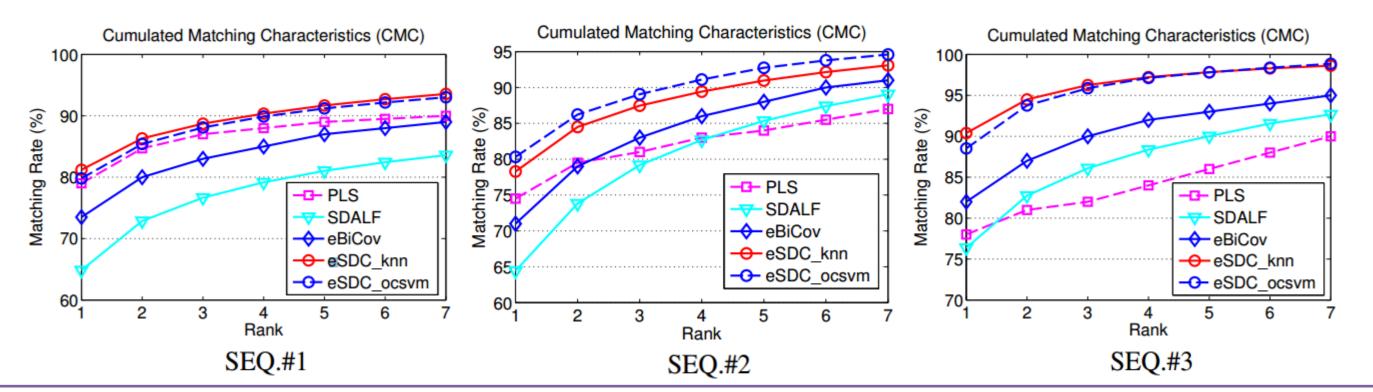
 $\mathbf{score}_{ocsvm}(x_{m,n}^{\mathcal{A},p}) = d(x_{m,n}^{\mathcal{A},p}, x^*),$ $x^* = \operatorname{argmax} f(x)$ $x \in \mathbf{X}_{nn}(x_{m,n}^{A,p})$




Matching for Re-identification Bi-directional Weighted Matching

 $\operatorname{Sim}(\mathbf{x}^{A,p}, \mathbf{x}^{B,q}) = \sum_{m,n} \frac{\operatorname{score}_{knn}(x_{m,n}^{A,p}) \cdot s(x_{m,n}^{A,p}, x_{i,j}^{B,q}) \cdot \operatorname{score}_{knn}(x_{i,j}^{B,q})}{\alpha + |\operatorname{score}_{knn}(x_{m,n}^{A,p}) - \operatorname{score}_{knn}(x_{i,j}^{B,q})|}$ Complementary Combination

 $d_{eSDC}(I_p^A, I_q^B) = \sum \beta_i \cdot \mathbf{s}_i(F_i(I_p^A), F_i(I_q^B)) - \beta_{SDC} \cdot \mathbf{Sim}(\mathbf{x}^{A, p}, \mathbf{x}^{B, q})$


Experimental Results:

ETHZ Dataset

	Method	r=1	r=5	r=10	r=20
000000000	LMNN[29]	6.23	19.65	32.63	52.25
300000	ITML [29]	11.61	31.39	45.76	63.86
100000	PRDC[29]	15.66	38.42	53.86	70.09
	aPRDC[19]	16.14	37.72	50.98	65.95
XXX	PCCA [24]	19.27	48.89	64.91	80.28
ELF	ELF[13]	12.00	31.00	41.00	58.00
SDALF	SDALF [10]	19.87	38.89	49.37	65.73
	CPS [7]	21.84	44.00	57.21	71.00
-B-SDC knn	eBiCov [21]	20.66	42.00	56.18	68.00
-G- SDC_ocsvm	eLDFV [22]	22.34	47.00	60.04	71.00
eSDC_knn	eSDC_knn	26.31	46.61	58.86	72.77
-O- eSDC_ocsvm	eSDC_ocsvm	26.74	50.70	62.37	76.36
20 25					

