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Abstract—Automatically counting vehicles in complex traffic scenes
from videos is challenging. Detection and tracking algorithms may fail due
to occlusions, scene clutters, and large variations of viewpoints and vehicle
types. We propose a new approach of counting vehicles through exploiting
contextual regularities from scene structures. It breaks the problem into
simpler problems, which count vehicles on each path separately. The
model of each path and its source and sink add strong regularization on
the motion and the sizes of vehicles and can thus significantly improve
the accuracy of vehicle counting. Our approach is based on tracking
and clustering feature points and can be summarized in threefold. First,
an algorithm is proposed to automatically learn the models of scene
structures. A traffic scene is segmented into local semantic regions by
exploiting the temporal cooccurrence of local motions. Local semantic
regions are connected into global complete paths using the proposed fast
marching algorithm. Sources and sinks are estimated from the models of
semantic regions. Second, an algorithm is proposed to cluster trajectories
of feature points into objects and to estimate average vehicle sizes at
different locations from initial clustering results. Third, trajectories of
features points are often fragmented due to occlusions. By integrating the
spatiotemporal features of trajectory clusters with contextual models of
paths and sources and sinks, trajectory clusters are assigned into different
paths and connected into complete trajectories. Experimental results on a
complex traffic scene show the effectiveness of our approach.

Index Terms—Semantic region, surveillance, trajectory clustering, vehi-
cle counting.

I. INTRODUCTION

Counting vehicles in traffic scenes by video surveillance is of great
interest for traffic management and urban planning. Many existing
object counting approaches [10], [17], [22] rely on a pedestrian or
vehicle detector based on the appearance of objects or background
subtraction results. However, it is difficult to design a vehicle detector
that robustly works in all kinds of complex traffic scenes since it has
to handle different types of vehicles, such as sedans, trucks, vans, and
buses, which are observed in different views. Vehicle detection is also
challenging with the existence of occlusions and scene clutters. In
recent years, some approaches [1]-[3], [7], [14], [15] have been pro-
posed to count objects without relying on detectors. They tracked and
clustered feature points or analyzed dynamic textures in the scenes.
Some of them [2], [3], [7] required training data from the target scenes.
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Fig. 1. Counting vehicles by tracking and clustering feature points.
(a) Counting vehicles on a single path. (b) Complex traffic scene with multiple
intersecting paths. (c) Counting vehicles on each of the intersecting paths
separately. The spatial distributions of different paths are indicated by colors.

We propose an approach of counting vehicles by tracking feature
points in the scene and clustering their trajectories into separate
vehicles. If there is only a single vehicle path in the traffic scene, e.g.,
as shown in Fig. 1(a), the counting problem becomes relatively easy
since the movements of vehicles are strongly regularized by the path.
Vehicles must appear and disappear in fixed regions, which are called
the source and the sink of the path. The trajectories of the feature points
on vehicles must be within the region specified by the path. If two
vehicles are on the same lane, their order of passing through the path
cannot be changed. The average size of vehicles observed at the same
location can be estimated. The problem becomes more challenging if
the traffic scene is complex and has multiple intersecting paths, e.g.,
as shown in Fig. 1(b), since different moving patterns of vehicles are
mixed. Existing approaches counted objects in the scene altogether,
and the contextual information provided by the path models was not
well exploited. This is partially due to the fact that it is not easy to learn
automatically and accurately the models of paths in complex traffic
scenes where object detection and tracking are not reliable.

A. Our Approach

Our approach automatically learns the models of scene structures
and breaks the problem of counting vehicles in complex scenes into
simpler problems, which count vehicles on each path separately. It first
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learns the models of semantic regions, which are parts of paths, using
our approach previously proposed in [20]. Wang et al. [20] learned
that the models in the semantic regions are based on the cooccurrence
of local motions. It did not require object detection and tracking.
We propose a fast marching algorithm to automatically connect local
semantic regions into complete global paths. The models of sources
and sinks of the paths are also estimated from the models of semantic
regions. Then, an algorithm is proposed to estimate the average vehicle
sizes at different locations along each path and to cluster trajectories of
feature points into objects according to the estimated average vehicle
sizes. Due to occlusions among objects, trajectories of features points
on the same object may be broken into multiple parts. Our approach
assigns trajectory clusters into different paths and connected them
by integrating multiple cues, including the spatiotemporal features of
trajectories, the spatial distributions of vehicle paths, and the models
of sources and sinks.

B. Related Work

In recent years, some approaches were proposed to count objects by
clustering trajectories of features points or modeling dynamic textures.
They are suitable for the cases when object detectors fail. Brostow
and Cipolla [1] proposed an unsupervised Bayesian clustering algo-
rithm to group probabilistically the trajectories of feature points into
clusters, which independently represented moving entities. Rabaud
and Belongie [14] proposed a conditioning algorithm to smooth and
extend fragmented trajectories and clustered them into objects with an
object model learned from training frames labeled with the ground-
truth object count. Chan et al. [2], [3] used a Poisson regression and a
Gaussian process to estimate the number of pedestrians by modeling
dynamic textures. They first segmented the crowd into regions with
homogeneous motion and then extracted low-level features from each
segmented region for regression. The approaches of [2], [3], and [14]
required manually labeled training frames.

Many approaches [5], [13], [21] learn path models through clus-
tering complete trajectories of objects. They do not work well in
complex traffic scenes where the trajectories of objects are highly
fragmented and misassociated. Some approaches [9], [20] learned
semantic regions, which are local subregions on the paths, by modeling
temporal and spatial correlations of local motions. Without relying
on object detection and tracking, they worked well in complex traffic
scenes. Based on their results, we proposed a fast marching algorithm
to connect local semantic regions into complete global paths.

Sources and sinks are the regions where objects appear and disap-
pear. If the starting or ending points of trajectories are not observed in
source/sink regions, it indicates tracking failures. To estimate sources
and sinks, most approaches [12], [18], [21] used Gaussian mixture
models (GMMs) to fit starting/ending points of trajectories. However,
in complex scenes, trajectories are often fragmented because of object
interactions, occlusions, and scene clutters. Therefore, the estimation
was biased by the false entry/exit points on broken trajectories. We
propose a new algorithm of estimating sources and sinks from the
models of semantic regions. It works well in complex traffic scenes.
Although path models, sources, and sinks have strong regularization
on the movements of vehicles, they were not well exploited in object
counting in the past work. Sources, sinks, scene structures, and veloc-
ity priors were used in some tracking algorithms [6], [11], [18].

II. LEARNING THE MODELS OF SCENE STRUCTURES

To learn the models of scene structures, we first use the unsuper-
vised algorithm proposed in [20] to learn semantic regions. Some
examples of semantic regions learned from the Massachusetts Institute
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Fig. 2. Examples of the distributions of local semantic regions learned from
the MIT traffic data set using the unsupervised algorithm proposed in [20].
Colors indicate directions of local motions: red (—), cyan (<), magenta (7),
and green (J). Intensity indicates the density of distributions over space.

(b)

Fig. 3. Estimate the source and sink of a semantic region. A starting point
(indicated by ‘x’) is selected as the point with the highest density in the
semantic region. The source and sink points (indicated by ‘x’) are found by
tracing the starting point. The starting point is driven by the principal local
motion direction estimated from the model of the semantic region, and it keeps
close to the ridge of the semantic region. (a) Example of a semantic region and
its source and sink. The source is indicated by blue, and the sink is indicated by
green. The black and red curves are the paths of tracing the source and the sink.
(b) 3-D density map of the semantic region in (a). The starting, source, and sink
points, and the tracing paths are also shown.

of Technology (MIT) traffic data set [20]' are shown in Fig. 2. In total,
there are 29 semantic regions learned. Because of space limitations,
only 12 of them are shown. The sources and sinks of semantic regions
are estimated in Section II-A. Local semantic regions are connected
into global paths in Section II-B.

A. Estimation of Sources and Sinks

Let ¢ be a distribution of a semantic region over space and local
motion directions. The scene is divided into small cells. ¢Z and ¢¥
are the distributions along the = and y motion directions in cell w. ¢7,
and ¢¥ are learned from long-term observations with the algorithm
in [20]. If ¢, (or @¥) is negative, the average motion direction is on
the opposite of the z-direction (or y-direction). ¢, =|¢% |+|¢Y | is
the overall motion density at w. As shown in Fig. 3, a starting point is
selected as the point with the maximum ¢,, in the semantic region. The
source and sink points are found by tracing the starting point. During

IThe MIT traffic data set is downloaded from http://www.ee.cuhk.edu.hk/
~xgwang/MITtraffic.html.
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Fig. 4. Connect semantic regions into paths. (a) Two overlapping semantic
regions with consistent ridge directions. Their distributions are represented
by red and green. Their ridges are represented by blue and yellow curves.
(b) Consistent density ¥ (x,y) of the two semantic regions in (a). They are
connected into a complete path since the defined distance between their source
and sink is small. (c) Define 6(x, y) using the ridge direction. (d) Two crossing
semantic regions with different ridge directions. (e) Consistent density 1 (z, y)
of two semantic regions in (d). There is a region of low densities between
sources and sinks. The defined distance between their source and sink is small,
and they are not connected into one path.

the tracing process, the point is driven by the principal local motion
direction, and it keeps close to the ridge, where the density is high, of
the semantic region. Suppose that the current position of the point is
(z,y). To find the sink point, the point moves to (z+ Az, y+Ay) at
the next step according to

Ax =v, + amy,

Ay = vy + amy
IZ” .
vx:E (bz'?
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Vy = n § ?;
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There are n cells in the neighborhood of (z,y). (vs,v,) drives the
point along the principal object moving direction. (m,, m,) keeps it
close to the ridge of the semantic region. Without (m,,, m, ), the point
may go astray beyond the path boundary before reaching the sink. The
source point can be reached by replacing ¢? and ¢! with —¢7 and
—¢Y, respectively.

ey
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B. Connecting Semantic Regions

We connect two semantic regions into a path if there is no significant
gap between their density distributions and their ridges are along
similar directions. Some examples are shown in Fig. 4. The goal is
achieved by calculating a defined distance between the source of a
semantic region and the sink of the other using the fast marching
algorithm [16]. For each semantic region ¢, we define the gradient of
distance at each location (z,y) as || 7 D(z,y)|| = 1/¢:(z, y), where
¢i(x,y) is the density distribution of semantic region ¢ at (, y). Given
distance gradient ||V D(z,y)]|, the shortest path connecting any two
locations and their shortest distance can be efficiently calculated using
the fast marching algorithm. We find the shortest path connecting the
source and the sink of a semantic region and define it as the ridge of
the semantic region.

For any two semantic regions ¢ and j, a consistent density distribu-
tion is defined as follows:

=03 @) =0, (@.w)]

e . ()

[T

Wi (x,y) = [bi(z,y) + @5 (z,y)]

For location (z, y), its nearest point (z’,y’) on the ridge of the seman-
tic region 4 is found, and let 0, (z’, y") be the ridge direction at (x',y").
We choose 0, (x,y) = 0;(z',y’) in (2). |0;(z,y) — 0, (x,y)| € [0, 7].
1;5(x,y) is low if both semantic regions have low densities at (x, y),
which means that there is a gap between the two semantic regions, or
their ridge directions are inconsistent, which means that the two se-
mantic regions are along different directions. The gradient of distance
at (z,y) is defined as | VD(z, y)|| = 1/v;;(x,y). The distance from
the source of region ¢ and the sink of region j is calculated using the
fast marching algorithm. The two regions are connected into a path if
the distance is small.

III. CLUSTERING TRAJECTORIES OF FEATURE POINTS

Feature points in the scene are detected and tracked using the
Kanade-Lucas—Tomasi tracker [19]. Tracking stops if the feature
points reach the scene boundaries, if there is large deviation of moving
directions, or if there is no matching feature point nearby. Because
of occlusions and scene clutters, the trajectories of feature points are
highly fragmented. These fragments are call tracklets [6]. To detect in-
dividual vehicles, tracklets are clustered by mean shift [4] according to
their spatial and temporal proximity. Because of projective distortions,
vehicles appear in different sizes at different locations. The average
size of vehicles at different locations are estimated and considered in
clustering.

Ty ={(@ik, Yk, V5, Vs ti) Yoy isatracklet. @k, yix ), (05, 05 )s
and t;;, are the coordinate, velocity, and frame index of point k£ on 7},
respectively. The distance between T; and T} is

1
D(T;,T;) = — Z |:(xzk1 = Tiny)? + (Yiky — Yino)’
tiky =tikg

nij
7 (o —5) 7 (e, —)’]

where n;; is the number of frames, and T; and T temporally overlap.

Gaussian kernel K (T;,T;) = exp{—D(T};,T;)/h} is defined. The
initial clustering results are obtained by mean shift with the defined
kernel. Mean shift is an iterative algorithm. Assuming that T®) is the
estimated mean of the cluster at the current step, the mean estimated at
the next step is

ETiEN(TU)) K(T;, T)T,

T+1) _
K(T;,,T®)

T; eN(T1)

where NV(T(V) is the neighborhood of T("). After the mean-shift
clustering, the average size o (., of vehicles at each location (x,)
can be estimated as the average of the spatial sizes of clusters that cover
(x,y). Given (4 4, the D(T;,T;) can be refined by normalizing the
sizes of vehicles as follows:

1 Z
D(TZ,TJ) = T)”
23

t =t

- xikz)Q + (ylkl — y’ik'2)2
0(21'4/)/0%

(mikl

iky =likg

+v (Ufkl - Ufk2>2 +7 (Uiykl - U?@)Q

where © = (@, + Tix,)/2, and y = (Yix, + Yik,)/2. Then, mean
shift is applied again based on the normalized kernel to get the final
clustering results. This normalization helps to cluster objects into
proper sizes.
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IV. TRACKLET ASSIGNMENT AND ASSOCIATION

Let CT be a cluster of tracklets. CT" is assigned to one of the
vehicle paths considering their spatial overlaps and motion consistency
or removed as nonvehicles. For C'T’, the density maps of motions along
the x-direction and y-direction are calculated as

=2l -y ll?

2
M*(z,y) = E vie 271
(zr,yx)ECT
Cle—g 2+l =g ll?
2
MY (z,y) = g vie 273

(zg,yk)ECT

The density maps of CT" are obtained by smoothing velocities of
points in CT" with a Gaussian kernel. ¢* and ¢¥ are the density distri-
butions of the x and y motion directions of the path. The consistency
between a tracklet cluster and a path is

Z(ar,y) M (iﬂ, y)()bx (:E, y)
S Mo @0)| - [ Sy 670
> oy MY (@, 9)¢Y (2,)

X . 3
Z(I,y) My(x,y)‘ ' ’Z(z,y) ¢y($: y)

A cluster of tracklets is assigned to the path with the largest consis-
tency. If the largest consistency is below certain threshold, the cluster
of tracklets is removed as a nonvehicle.

After this step, vehicle counting becomes relatively easy since all
the remaining clusters of tracklets are on the same path whose sources
and sinks are known. The starting/ending points of tracklet clusters of
the same vehicle are associated using the Hungarian algorithm [8] by
properly defining a transition matrix C, i.e.,

Ciy Cin Cl(n+1) —0
C— Ch1 Chn —0o0 Cn(vz+l)
C(n+1)1 —o0 0 e 0
—00 C(2n)n 0 . 0

where 7 is the number of tracklet clusters on the path.

Let T; be the mean of tracklet cluster C'T;. Its starting and ending
points are (s, Yis, V5, VY, tis) and (Zie, Yie, V5, VY, tie ), TESPEC-
tively. The starting (ending) point of C'T; is either associated with the
source (sink) of its path or connected to the ending (starting) point of
a unique tracklet cluster on the same path. C;(; ) (4 < n) defines the
likelihood of the ending point of C'T; being associated with the sink as
follows:

2 2
Cli(i4n) = €xXp { (@ie = o) t(yw Taink) }
03
where (Zsink, Ysink) i the center of the sink, and oo specifies the
spatial range of the source.
Cln+i)i(t < n) defines the likelihood of the starting point of C'T;
being associated with the source as follows:

(a:is - wsource)z + (yzs - msource)2 }

2
P

Cliyn)i = exp {—

where (Zsource; Ysource) 18 the center of the source.
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Path 5 Path 6 Path 7

Fig. 5. Seven vehicle paths and their sources and sinks estimated from the
29 semantic regions learned by [20]. The star markers with red colors indicate
the sources of paths. The star markers with green color indicate the sinks.

(®)

Fig. 6. Sources and sinks estimated from the starting and ending points of
trajectories of feature points using the GMM [12]. The estimated sources and
sinks are marked by yellow circles.

C;;(i <m,j < n) defines the likelihood of connecting the ending
point of C'T; with the starting point of C'T}. It considers both motion
affinity and temporal affinity as follows:

_ time motion
Cl'j = Oij X Oij
where C};me defines the temporal affinity. Let At = ¢;, — t;.. Thus

C"ci'me _ aAtfl
)

where 0 < o < 1. C,fji-me is lower if the temporal gap between C'T;
and CT) is larger. Cg-‘o“‘m defines the motion affinity, i.e.,

motion
o

(@ie + VEAL — 255)% + (Yie + VL AL — yjs)2 }

=expy — 207
2 2
(azieJr Vi At — xjs) + (yieJr vi At — yjs)
Xexp { — >
2073

V. EXPERIMENTS

We first present the results of connecting semantic regions into
complete paths and estimating the sources and sinks of paths. Ex-
periments are done on the MIT traffic data set [20]. As shown in
Fig. 5, seven complete paths are estimated from 29 semantic regions
learned by [20], and their corresponding sources and sinks are also
well located. For comparison, Fig. 6 shows the results of using GMMs
to estimate the sources and sinks [12]. This approach is popularly used
in video surveillance. Sources are estimated from the starting points of
trajectories, and sinks are estimated from the ending points. In Fig. 6,
400 trajectories are used for estimation. Due to occlusion and vehicles
stopping and restarting, the trajectories of vehicles are fragmented.
Such tracking failures bias the estimation. Some of the sources and
sinks estimated by the GMM locate around occluders (street lamps
and trees) and stopping lines. Therefore, sources and sinks estimated
from semantic regions are more reliable.

To evaluate the performance of object counting, we conduct two
experiments and manually label the objects in 3000 frames from the
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Fig. 7. Results of counting in frame over 100 samples from 3000 frames using the (top) Bayesian method and (bottom) our approach. The green lines show the
missed counting mainly because of cluster merging, and the red lines show the false alarm due to cluster splitting and occlusion.

TABLE 1
COMPARISON OF COUNTING QUALITIES FOR COUNTING IN FRAME
| Method \ MSE | ABS [ MD | FA |
Bayesian 3.68 1.52 | 15.19% | 23.92%
Our approach | 1.43 | 093 | 9.81% 4.60%

MIT traffic data set. In the first experiment, we compare with the
Bayesian object counting approach proposed in [1]. Both [1] and our
approach have some free parameters, and we selected them from a
small validation set from the same scene. The study [1] counts the
number of objects at every single frame and does not keep the identities
of objects over time. We sample a frame every one second (the frame
rate is 30 fps) and compare the counting results with the ground truth at
every frame. Fig. 7 plots the number of objects counted by [1] and our
method, the numbers of objects that they missed, and their false alarms.
The count estimated by our approach varies from 1 to 9 at different
frames. Table I report the MSE, the averaged absolute counting error,
misdetection rate, and the false alarm rate (FA) over the 3000 frames,
as described in the following:
1 = N 2
MSE = - Z(cl ;)

i=1

1 m
error:—g |é; — ¢l
m
=1

m
miss — - D s fe; x 100%
m 1=1
1 m
FA = — " cf*/é; x 100%
i
where in the ¢th frame, ¢; is the counting result, ¢; is the manual
counting result, c** is the number of missed counting, and c£* is the
number of false alarms, all averaged over the M sample frames.

For Bayesian counting, a threshold is used to remove the clusters of
feature points in small sizes, which are more likely to be pedestrians.
For our method, we add up the number of clusters of tracklets that
are active in the current sample frame as the counting result. Our
approach has much fewer misdetection occurences and false alarms.
Both approaches count objects through clustering feature points. As
shown in Fig. 8, in Bayesian counting, multiple vehicles detected in the
previous frame may be wrongly merged in the next frame. In addition,
feature points of a single vehicle detected as the previous frame may
wrongly split into multiple clusters in the next frames. Our approach
alleviate such problems to some extent because of the regularization
added by path models and average vehicle sizes.

(d)

Fig. 8. Example of error merging and splitting in the result using [1]. (a) Two
individual vehicles are detected in (left) the previous frame, and they wrongly
merge together in (right) the later frame. (b) Individual vehicle is detected in
(left) the previous frame, and it wrongly splits into two separate entities due to
occlusion (right). Different entities are indicated by different colors.

In the second experiment, we use the whole 3000 frames and our
approach to count the accumulated numbers of vehicles along each of
the seven paths, respectively. When a vehicle enters the scene at the
ith frame and is on the kth path, the number of accumulated count
on path k increases by 1 at frame <. Fig. 9 shows that our counting
result is close to the ground truth. From the dynamic variations of
the accumulated numbers, we can observed different traffic patterns.
Path 6 has the largest amount of traffic during this period. In total, there
are 44 vehicles entering the scene during this period. Our counting
result is 48. Our approach tends to overcount the number of vehicles.
Error happens if a vehicle much larger than the normal size enters
the scene, i.e., it may be counted as two, since under our model,
there is no evidencing showing that the two clusters of tracklets
actually belong to the same object. One possible solution is to consider
appearance information. If two clusters of tracklets have similar color,
they could be merged into one. Fig. 9 also shows the counting results
without including path models, associating clusters of tracklets only
based on their motion and temporal information. The result becomes
much worse. In total, there are 59 objects counted with 15 false
alarms.
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Fig. 9. Results of counting vehicles on paths: Seven figures show cumulative numbers of counted vehicles on seven different paths. The last figure is the overall
counting result in the whole scene (i.e., it is the sum of the results of the first seven figures). Manual count: the ground truth. Resultl: counting vehicles without
using the models of paths and clusters of tracklets are associated only based on the motion and temporal information. Result 2: counting vehicles using the models

of paths (our approach).
VI. CONCLUSION AND DISCUSSIONS

In this paper, we have proposed a new approach to count vehicles in
complex traffic scenes by utilizing the information from semantic re-
gions. By counting vehicles on each path separately, it breaks the chal-
lenging problem into simpler problems. Semantic regions, which are
learned from optical flows, are appropriately connected into complete
paths using the proposed fast marching algorithm, and their sources
and sinks are well estimated. We propose an algorithm to estimate the
average vehicle sizes at different locations along each path that helps
to cluster feature points into objects in turn. The Hungarian algorithm
is used to associate fragmented trajectories considering the contextual
information added by the models of semantic regions, sources, and
sinks. Experimental results show the effectiveness of our approach.

Our approach has some limitations and can be improved in several
aspects. A semantic region could be detected if pedestrians frequently
walk through a zebra crossing. Pedestrian paths and vehicle paths can
be distinguished by simple human intervention or the distributions of
object sizes and speed along the paths. In extremely crowded scenes,
vehicles on adjacent lanes may be very close in space and move side-
by-side with the same speed. It poses difficulty on trajectory clustering.
This problem can be alleviated to some extent by first excluding
trajectories outside a lane before clustering.
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